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Effect of random synaptic dilution in oscillator neural networks
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To discuss robustness against damage of synaptic connections in oscillator neural networks, we examine the
effect of random dilution of the synapses in the case in which connections are symmetric. Deriving the
mean-field equations in the replica symmetry approximation, we obtain the storage capacity and the critical
overlap as functions of the ratio of the disconnected synapses. In addition, we find that theoretical results for
this system are supported by our numerical simulations. Finally, it is suggested that the oscillator neural
network is more robust against dilution than is the Hopfield md&1063-651X97)12206-1

PACS numbes): 87.10+e, 05.40+]

In recent years, oscillatory units have often been used toon) fires periodically in the absence of interactions, it can be
model neural networks. This trend was caused partially byegarded as a limit cycle oscillator. On the other hand, it is
some recent experimental results, which suggest that sywell known that, in the case of weak coupling, such a
chronization of pulses may contribute to information pro-coupled system can be reduced to a system of simple
cessing in neuronal systerf§. From the theoretical point of coupled phase oscillatof46]. In this model, the state of the
view, there have been several attempts to explore the potefth system can be characterized by a single varighleThis
tial ability of such temporal coding in artificial neural net- quantity ¢; is usually referred to as the phase, which repre-
works [2]. What is important here is that utilizing temporal sents the timing of neuronal firings. Using such a reduction
features of neuronal activities for the coding mechanisntechnique, we obtain the general form of the phase equations,

might enable the network to process information more effec- do, N
tively. However, these temporal features, including synchro- T Wi+ E Ti(¢;— b)), (1)
nization and timing of firings, cannot be described naturally dt =1

by the McCulloch-Pitts formulation, because it is assumed ) .

that information is encoded only by the averaged firing ratedvhere w; is the frequency of théth neuron, and’; repre-

of the neurons. As a first step toward modeling the tempora$ents the effect of the interaction between itte and jth

aspects of neural networks, we believe that the oscillatoP€Urons. We should remark that the system is invariant under

neural network provides a suitable framework. uniform phase translationg; — ¢;+ ¢o, where ¢, is an
Some theoretical results concerning oscillator neural netarbitrary constant. It has also been theoretically shown that

works have been obtained by several authigrs10]. In par-  L'ij(¢) is a 2m-periodic function of¢. To be specific, we

ticular, when the Hebbian rule with random patterns is usednust assume a certain form for eably and w;. In this

in an equivalent model, Cook estimated the storage capacitjaper, we assume that=Q and I'y; = J;;sin(¢;— &+ ;).

asa.=0.037 using the replica symmetry approximatjéh ~ Eliminating Q by applying the transformationg;— ¢,

However, in comparison with the Hopfield modél], there ~ +{t, we then obtain

are many important unsolved problems with regard to oscil- do, N

Iator ngural networks. Among sugh pr.oblems, one we cannot d_' = 2 Ji;sin( ¢ — di+ Bij), 2)

avoid is that of theoretically estimating robustness against t 1

damage of the synaptic structure. In the case of the Hopfield )

model, this has already been studied by several aufigrs ~ WhereJ;; andg;; should be chosen so that the system is able

15]. Oscillator neural networks can retrieve more detailedi© rétrieve the stored patterns. _ _

information than can the Hopfield model, because the memo- 1O See the similarity between this model and the tradi-

rized patterns are described by continuous rather than binaf§Pnal neural networks, it may be convenient to introduce the

variables. For this reason, one might guess that the retriev&PMplex representatiolV;=exp(¢) [7.8]. Using the ex-

ability of the oscillator neural network decreases faster withPressionW; in Eq. (2), the equilibrium stable states of the

the ratio of the disconnected synapses than that of th&ystem satisfy the conditions

Hopfield model. To clarify the above point, in this paper we h. N
wish to address the problem of how the oscillator neural Wi:_', hi:E CijW;, ©)
network is affected by random synaptic dilution. L =1

Let us start with a survey of the theoretical basis of oscil- )
lator neural networks. We first consider the situation inWhere Ci;=J;;exp(g;). This can be regarded as the ex-
which N periodic firing neuronal systems are coupled withtended form of the traditional neural networks.
each other. In general, such a system can be described by Let us denote a set dP patterns to be memorized as
evolution equations involving a set of state variables, forcomplex variables &*=exp(#) (v=1,2,...,P), where
example, a membrane potential and several ionic leak curd!* represents the phase value of ifle neuron in theuth
rents. Since each systefa neuronal group or a single neu- pattern. For simplicity, we assume that t& are chosen at
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random from a uniform distribution between 0 ane.2it =7?. The square brackefs] denote averaging over the dis-
must be noted that any pattern generated by the uniforrtribution of the noise. It is easily shown that the relationship
phase translatiog*exp(¢g) represents a pattern equivalent between the variance of this noise and the dilution parameter
to £*. This is because information is encoded not by theC is given by
absolute time but by the relative time of neuronal firings. To

examine the effect of the random dilution, we suppose that ,72:(1_0)“. (6)
the synaptic efficacies have the form c
P
) Cii ~ - . . .
Cij=J;;expi B;)) :N_'JCE EEL, (4) To apply statistical mechanics for the analysis of the equi-

librium states, we introduce an additional noise teyitt) in
- the model represented by E@). Since the synaptic matrix
where £ is the complex conjugate @f*. The dilution co- C, in Eq. (4) is Hermitian, i.e..C;;=C;, the model equa-
efficients ¢;; are independent random variables taking the;ons can be rewritten in the gra&ientjforms

values 1 and 0 with probabilities and 1—c, respectively.

To obtain analytical results, we restrict ourselves to the sym- do; dH L ~

metric diluted synapses, that is, we consider the case T (9_¢i+ vi(t), H= _Egtj CiWiw;, (0
cij=c;i . We briefly touch upon the effect of asymmetric
dilution later. Note thaNc is equal to the average number of
nonzero connections per neuron. Furthermore, followin
Sompolinsky’s idea, in the limiN—oo the synaptic matrix
Ci; in Eq. (4) can be written as a fully connected model wit
synaptic noise,

here the last termy;(t) is Gaussian white noise character-
zed by<’y|(t)>:0 and<’y,(t)’)/J(t,)>:2T5”5(t_t,) The
h temperaturel (=B1) gives a measure of the level of the
stochastic noise in the dynamics. The introduction of this
b noise enables us to perform the standard mean-field analysis
Co— 1 E WEn 5 in terms of statistical mechanics. Therefore, the asymptotic
1N o SRR 5 behavior of the network at finit& is governed by the free
energy, and the equilibrium probability density is given by
Here, the synaptic noisg;; is a complex random variable the Gibbs distributiore™"'T. Using the synaptic matriss),
obeying Gaussian distribution withz;]=0 and [|77ij|2] the HamiltonianH takes the form

P 2

+

2

P
(2 cos =0 | +| 2 sin(g— )| |+ 5= 2 micosd—d)+ 2 wifsine— ). ©)

7

where nﬁe and n:;“ are the real and the imaginary parts#f, respectively.

We consider the retrieval states in whioch=m~0O(1) andm#~O(1/\/ﬁ) for u>1. The overlagm,, is defined as

N

> explig(t)—ioh)

=1

1 N

Then let us define the parameteby «=P/N. To proceed, we must first perform the quenched averaging of the free energy
over the randomness. Using the replica method, the averaged free energy per neuron is computed from

f=lim — N—lﬂ«lnz)): lim lim— Niﬁnln«z"}), (10

N— o0 N—o n—0

where(( )) indicates a quenched average over the patt&frass well as over the synaptic noisg . The partition function
Z is defined byz= Try, e~ AR,
In the replica symmetry approximation, we find that the averaged free energy per neuron is given by

B
1 r 1 5 >
f=§m2+%+ﬂ%(l—q)+% In 1—5,8(1—q)}—'8%(1_q)2_
1-5(1-a)
1 dzdz, '{_zfﬂg 2m _
E<<fj om X > InJO d¢ expB[A cosp+B sing] 0, (11)

with
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(a2

2

_ Var +275%q

2

Z,+m cos,

Z,+m sind. (12

The double angular brackets )), denote an average ovérwith the same distribution ag. The network is then charac-

terized by order parametens, r andq. The parametem represents the overlap with the retrieved patté’rnThe parameters

g andr correspond to the Edwards-Anderson order parameter and the mean-square random overlap for the unretrieved

patterns, respectively. The saddle-point equations for these order parameters are

dz,dz, 2+

I,(BVA2+B?) A cosf+B sing

o)

<<H

2

B(l—g)=—=—x NPy <<fjdzld22 p<_

lo( BVA?+B?)

);

VAZ2+ B2

Zi+25\ 1,(BVA?+B?) Az, + Bz,
2 J1o(BVAZ+B?) JAZ+B2[ | |

29

r=

wherel,(z) is the kth-order modified Bessel function, de-
fined by

1 (2=
l(2)= o fo d¢p e?°%cok . (14)

We are now ready to discuss the storage capaeijtyn
the case of the random diluted synapses. In the limit of zer
noise, 3~ 1—0, q tends to 1, and Eqg13) reduce to the
equations

m=f1(

1
=2{1—

f
\/ar+2772 ?

wheref,; andf, are defined by

m

Vari27

m

-2
} , (19

\/ar+2772

f _fzwd Jd“ R(R sing+2y)e R2
1= | de ] IR (Re+ 4Ry sing+ 4y2) ™

f _fzwd f iR R(R?+ 2Ry sing)e 72
V)= ], de ), IRy (RE+ 4Ry sing+ 4y5) 7
(16)

Note that the relationship between the dilution parameter
and the mean-square deviation of the synaptic najsis
given by Eq.(6). These equations always have a trivial so-
lution m=0, which corresponds to a spin glass statg (
#0). Fora<a,, there also exists a solution, for which

B B\
-5+59

(13

solutions of Eqs(15) is plotted as a function of the ratio of
the disconnected synapses. In the case of the fully connected
network, that is,c=1(»=0), we obtained thatr,=0.038
andm;=0.90. This result is essentially identical to those of
the Q-state clock model in the limiQ—~ estimated by
Cook. In general, it is expected that falls monotonically
gom 0.038 to zero ag increases. In fact, analytical results
Show that the retrieval solution exists only in the case that
7<7e, n.=1m2~0.886, anda, is a monotonically de-
creasing function ofp. On the other hand, in case of the
Hopfield model, Sompolinsky has estimated that
2/7~0.797. Using Eq(6), we finally obtained a the-
oretical curve, as shown in Fig. 1. We also carried out nu-
merical simulations in which each value @f was averaged
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#0, corresponding to a retrieval state. This retrieval solution FiG. 1. Dependence of the storage capaityon the ratio of

disappears discontinuously at., where the overlapm
jumps from the finite valuen; to zero, except for the case
c=0.

In Fig. 1, the storage capacity obtained from numerica

disconnected synapses-t. The solid curve represents theoretical
results. The data points indicate simulation results Wth 1500

for 20 trials. For reference, the theoretical results of the Hopfield
Imodel are indicated by the dashed curve.
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FIG. 2. Dependence of the critical overlag. on the ratio of FIG. 3. Comparison of the normalized storage capacitiés,
disconnected synapses-t. The solid and the dashed curves cor- between the oscillator model and the Hopfield model.

respond to the oscillator and the Hopfield models, respectively. . .
P P P y Therefore, we can conclude that the oscillator network is

over 20 trials withN=1500. As is clear from Fig. 1, the totally more robust against dilution than the Hopfield model.

simulation results are in reasonable agreement with analyti- " co?clu?%n{hus_mﬁ the repfllca jymmetrlc Solgﬁlotn, we

cal results. Figure 2 shows the overlap of the retrieval state g} ¢ €stimated the influénce of random synaplic diiution on

a,, where the solid and dashed curves correspond to th e storage capacity and the critical overlap in oscillator neu-
c»

oscillator model and the Hobfield model. respectively. In ei_ral networks. As a result, the difference between the perfor-
P ' P y- . mance of the fully connected network and that for a diluted

o . . ‘PG etwork is smaller in the case of the oscillator model than in
dilution as long as ¥ c is smaller than 0.8. Particularly in - he case of the Hopfield model. In this sense, we conclude
the oscillator neural network, the critical overlaR remains  that the performance of the oscillator network is superior to
almost constant in the range 0 to 0.8. that of the Hopfield model. Since the oscillator network is
As mentioned abovey, is slightly larger in the present a|so capable of retrieving more detailed information, this is
model than in the Hopfield model. This implies that our sys-an unexpected result. This suggests that the robustness
tem is more robust against synaptic dilution than is theagainst the damage of the synaptic connection, at least, is not
Hopfield model. Let us attempt to clarify this point quantita- deteriorated by utilizing the timing of the firings for the cod-
tively. Although «. in the oscillator network is generally ing mechanism. This result encourages theoretical attempts
smaller than in the Hopfield mod€l7], the oscillator net- to explore the potential ability of temporal coding.
work is able to retrieve phase patterns represented by con- Finally, we would like to make some comments. First,
tinuous variables, not simple binary ones. Thus, taking acene may notice that the storage capacity found using simu-
count of the information content in the retrieved patterns, itlations is slightly larger than that from theoretical results.
makes no sense to compare the storage capacitief the  This slight increase may be attributed to replica symmetry
two models. However, it is meaningful to estimate and com-breaking. Second, we assumed that the symmetry of the con-
pare how the random dilution of synapses in each modehections is maintained in dilution process. However, this
reduces its performance from the level without dilution condition is not realistic from the biological point of view. It
(c=1). For this purpose, we define the normalized maxi-is important to study the effect of such asymmetric dilution
mum storage capacity ag = «./al, wherea? is the maxi- [18,19. In a preliminary study, we found that the results
mum storage capacity at=1. Thus,a2=0.038 in the oscil- phange little u_nless the ratip of tht_a asymmetric connections
lator model, anda®=0.138 in the Hopfield model. The IS high. We will report details of this work at a later date.

dependence of the normalized storage capacitigs on We would like to thank H. Yanai and T. Munakata for
1—cis shown in Fig. 3. Itis obvious from this figure that the valuable comments. We also thank Y. Kuramoto and I. Nish-
normalized capacityry of the oscillator network is always ikawa for helpful discussions. This work was supported by
larger than that of the Hopfield network. Nevertheless, forthe Japanese Grant-in-Aid for Science Research Fund from
€< 0.8, the qualities of the retrieval patterns obtained in eithe Ministry of Education, Science and Cultur@o.

ther model are largely independent @f as seen in Fig. 2. 08279224 and No. 087403117
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