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Effect of random synaptic dilution in oscillator neural networks

Toshio Aoyagi and Katsunori Kitano
Department of Applied Mathematics and Physics, Kyoto University, Kyoto, Japan

~Received 30 September 1996!

To discuss robustness against damage of synaptic connections in oscillator neural networks, we examine the
effect of random dilution of the synapses in the case in which connections are symmetric. Deriving the
mean-field equations in the replica symmetry approximation, we obtain the storage capacity and the critical
overlap as functions of the ratio of the disconnected synapses. In addition, we find that theoretical results for
this system are supported by our numerical simulations. Finally, it is suggested that the oscillator neural
network is more robust against dilution than is the Hopfield model.@S1063-651X~97!12206-1#

PACS number~s!: 87.10.1e, 05.40.1j
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In recent years, oscillatory units have often been use
model neural networks. This trend was caused partially
some recent experimental results, which suggest that
chronization of pulses may contribute to information pr
cessing in neuronal systems@1#. From the theoretical point o
view, there have been several attempts to explore the po
tial ability of such temporal coding in artificial neural ne
works @2#. What is important here is that utilizing tempor
features of neuronal activities for the coding mechani
might enable the network to process information more eff
tively. However, these temporal features, including synch
nization and timing of firings, cannot be described natura
by the McCulloch-Pitts formulation, because it is assum
that information is encoded only by the averaged firing ra
of the neurons. As a first step toward modeling the tempo
aspects of neural networks, we believe that the oscilla
neural network provides a suitable framework.

Some theoretical results concerning oscillator neural n
works have been obtained by several authors@3–10#. In par-
ticular, when the Hebbian rule with random patterns is u
in an equivalent model, Cook estimated the storage capa
asac50.037 using the replica symmetry approximation@6#.
However, in comparison with the Hopfield model@11#, there
are many important unsolved problems with regard to os
lator neural networks. Among such problems, one we can
avoid is that of theoretically estimating robustness aga
damage of the synaptic structure. In the case of the Hopfi
model, this has already been studied by several authors@12–
15#. Oscillator neural networks can retrieve more detai
information than can the Hopfield model, because the me
rized patterns are described by continuous rather than bi
variables. For this reason, one might guess that the retri
ability of the oscillator neural network decreases faster w
the ratio of the disconnected synapses than that of
Hopfield model. To clarify the above point, in this paper w
wish to address the problem of how the oscillator neu
network is affected by random synaptic dilution.

Let us start with a survey of the theoretical basis of os
lator neural networks. We first consider the situation
which N periodic firing neuronal systems are coupled w
each other. In general, such a system can be describe
evolution equations involving a set of state variables,
example, a membrane potential and several ionic leak
rents. Since each system~a neuronal group or a single neu
551063-651X/97/55~6!/7424~5!/$10.00
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ron! fires periodically in the absence of interactions, it can
regarded as a limit cycle oscillator. On the other hand, i
well known that, in the case of weak coupling, such
coupled system can be reduced to a system of sim
coupled phase oscillators@16#. In this model, the state of the
i th system can be characterized by a single variablef i . This
quantityf i is usually referred to as the phase, which rep
sents the timing of neuronal firings. Using such a reduct
technique, we obtain the general form of the phase equati

df i

dt
5v i1(

j51

N

G i j ~f j2f i !, ~1!

wherev i is the frequency of thei th neuron, andG i j repre-
sents the effect of the interaction between thei th and j th
neurons. We should remark that the system is invariant un
uniform phase translationsf i → f i1f0, wheref0 is an
arbitrary constant. It has also been theoretically shown
G i j (f) is a 2p-periodic function off. To be specific, we
must assume a certain form for eachG i j and v i . In this
paper, we assume thatv i5V and G i j5Ji jsin(fj2fi1bij).
Eliminating V by applying the transformationf i→f i
1Vt, we then obtain

df i

dt
5(

j51

N

Ji jsin~f j2f i1b i j !, ~2!

whereJi j andb i j should be chosen so that the system is a
to retrieve the stored patterns.

To see the similarity between this model and the tra
tional neural networks, it may be convenient to introduce
complex representationWi5exp(ifi) @7,8#. Using the ex-
pressionWi in Eq. ~2!, the equilibrium stable states of th
system satisfy the conditions

Wi5
hi

uhi u
, hi5(

j51

N

Ci jWj , ~3!

where Ci j5Ji jexp(ibij). This can be regarded as the e
tended form of the traditional neural networks.

Let us denote a set ofP patterns to be memorized a
complex variables j i

m5exp(iui
m) (m51,2, . . . ,P), where

u i
m represents the phase value of thei th neuron in themth
pattern. For simplicity, we assume that theu i

m are chosen at
7424 © 1997 The American Physical Society
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55 7425EFFECT OF RANDOM SYNAPTIC DILUTION IN . . .
random from a uniform distribution between 0 and 2p. It
must be noted that any pattern generated by the unif
phase translationj i

mexp(if0) represents a pattern equivale
to j i

m . This is because information is encoded not by
absolute time but by the relative time of neuronal firings.
examine the effect of the random dilution, we suppose t
the synaptic efficacies have the form

Ci j5Ji jexp~ ib i j !5
ci j
Nc(m50

P

j i
m j̃ j

m , ~4!

where j̃ i
m is the complex conjugate ofj i

m . The dilution co-
efficients ci j are independent random variables taking
values 1 and 0 with probabilitiesc and 12c, respectively.
To obtain analytical results, we restrict ourselves to the sy
metric diluted synapses, that is, we consider the c
ci j5cji . We briefly touch upon the effect of asymmetr
dilution later. Note thatNc is equal to the average number
nonzero connections per neuron. Furthermore, follow
Sompolinsky’s idea, in the limitN→` the synaptic matrix
Ci j in Eq. ~4! can be written as a fully connected model wi
synaptic noise,

Ci j5
1

N (
m50

P

j i
m j̃ j

m1h i j . ~5!

Here, the synaptic noiseh i j is a complex random variabl
obeying Gaussian distribution with@h i j #50 and @ uh i j u2#
m

e

at

e

-
e

g

5h2. The square brackets@ # denote averaging over the dis
tribution of the noise. It is easily shown that the relationsh
between the variance of this noise and the dilution param
c is given by

h25
~12c!a

c
. ~6!

To apply statistical mechanics for the analysis of the eq
librium states, we introduce an additional noise termg i(t) in
the model represented by Eq.~2!. Since the synaptic matrix
Ci j in Eq. ~4! is Hermitian, i.e.,Ci j5C̃j i , the model equa-
tions can be rewritten in the gradient forms

df i

dt
52

]H

]f i
1g i~ t !, H52 1

2(
iÞ j

Ci j W̃iWj , ~7!

where the last termg i(t) is Gaussian white noise characte
ized by ^g i(t)&50 and ^g i(t)g j (t8)&52Td i jd(t2t8). The
temperatureT (5b21) gives a measure of the level of th
stochastic noise in the dynamics. The introduction of t
noise enables us to perform the standard mean-field ana
in terms of statistical mechanics. Therefore, the asympt
behavior of the network at finiteT is governed by the free
energy, and the equilibrium probability density is given
the Gibbs distributione2H/T. Using the synaptic matrix~5!,
the HamiltonianH takes the form
ergy
H52
1

2N(
m

P F S (
i
cos~f i2u i

m! D 21S (
i
sin~f i2u i

m! D 2G1
P

2
2(

i, j
h i j
Recos~f j2f i !1(

i, j
h i j
Imsin~f j2f i !, ~8!

whereh i j
Re andh i j

Im are the real and the imaginary parts ofh i j , respectively.
We consider the retrieval states in whichm15m;O(1) andmm;O(1/AN) for m.1. The overlapmm is defined as

mp[
1

NU(j51

N

j̃ j
mWjU5 1

NU(j51

N

exp~ if j~ t !2 iu j
p!U. ~9!

Then let us define the parametera by a5P/N. To proceed, we must first perform the quenched averaging of the free en
over the randomness. Using the replica method, the averaged free energy per neuron is computed from

f[ lim
N→`

2
1

Nb
^^ lnZ&&5 lim

N→`

lim
n→0

2
1

Nbn
ln^^Zn&&, ~10!

where^^ && indicates a quenched average over the patternsj i
m as well as over the synaptic noiseh i j . The partition function

Z is defined byZ5 Tr$f i %
e2bH($f i %).

In the replica symmetry approximation, we find that the averaged free energy per neuron is given by

f5
1

2
m21

a

2
1

bar

8
~12q!1

a

bH lnF12
1

2
b~12q!G2

bh2

8
~12q!22

b

2
q

12
b

2
~12q!

J
2
1

bK K E E dz1dz2
2p

expS 2
z1
21z2

2

2 D lnE
0

2p

df expb@A cosf1B sinf#L L
u

, ~11!

with
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A5
Aar12h2q

2
z11m cosu,

B5
Aar12h2q

2
z21m sinu. ~12!

The double angular brackets^^ &&u denote an average overu with the same distribution asu i
m . The network is then charac

terized by order parametersm, r andq. The parameterm represents the overlap with the retrieved patternj i
1 . The parameters

q and r correspond to the Edwards-Anderson order parameter and the mean-square random overlap for the un
patterns, respectively. The saddle-point equations for these order parameters are

m5K K E E dz1dz2

2p
expS 2

z1
21z2

2

2
D I 1~bAA21B2!

I 0~bAA21B2!

A cosu1B sinu

AA21B2 L L
u

,

b~12q!5
2

Aar12hq
K K E E dz1dz2

2p
expS 2

z1
21z2

2

2
D I 1~bAA21B2!

I 0~bAA21B2!

Az11Bz2

AA21B2 L L
u

,

r5
2q

S 12
b

2
1

b

2
qD 2 , ~13!
-

e

r

o
(

io

e

ca

f
cted

of

ts
hat

e
at

u-

al

eld
where I k(z) is the kth-order modified Bessel function, de
fined by

I k~z!5
1

2pE0
2p

df ez cosfcoskf. ~14!

We are now ready to discuss the storage capacityac in
the case of the random diluted synapses. In the limit of z
noise,b21→0, q tends to 1, and Eqs.~13! reduce to the
equations

m5 f 1S m

Aar12h2D ,
r52H 12

1

Aar12h2
f 2S m

Aar12h2D J 22

, ~15!

where f 1 and f 2 are defined by

f 1~y!5E
0

2p

dwE
0

`

dR
R~R sinw12y!e2R2/2

2p~R214Ry sinw14y2!1/2
,

f 2~y!5E
0

2p

dwE
0

`

dR
R~R212Ry sinw!e2R2/2

2p~R214Ry sinw14y2!1/2
.

~16!

Note that the relationship between the dilution parametec
and the mean-square deviation of the synaptic noiseh is
given by Eq.~6!. These equations always have a trivial s
lution m50, which corresponds to a spin glass stateq
Þ0). Fora,ac , there also exists a solution, for whichm
Þ0, corresponding to a retrieval state. This retrieval solut
disappears discontinuously atac , where the overlapm
jumps from the finite valuemc to zero, except for the cas
c50.

In Fig. 1, the storage capacity obtained from numeri
ro

-

n

l

solutions of Eqs.~15! is plotted as a function of the ratio o
the disconnected synapses. In the case of the fully conne
network, that is,c51(h50), we obtained thatac50.038
andmc50.90. This result is essentially identical to those
the Q-state clock model in the limitQ→` estimated by
Cook. In general, it is expected thatac falls monotonically
from 0.038 to zero ash increases. In fact, analytical resul
show that the retrieval solution exists only in the case t
h,hc , hc5Ap/2'0.886, andac is a monotonically de-
creasing function ofh. On the other hand, in case of th
Hopfield model, Sompolinsky has estimated th
hc5A2/p'0.797. Using Eq.~6!, we finally obtained a the-
oretical curve, as shown in Fig. 1. We also carried out n
merical simulations in which each value ofac was averaged

FIG. 1. Dependence of the storage capacityac on the ratio of
disconnected synapses 12c. The solid curve represents theoretic
results. The data points indicate simulation results withN51500
for 20 trials. For reference, the theoretical results of the Hopfi
model are indicated by the dashed curve.
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55 7427EFFECT OF RANDOM SYNAPTIC DILUTION IN . . .
over 20 trials withN51500. As is clear from Fig. 1, the
simulation results are in reasonable agreement with ana
cal results. Figure 2 shows the overlap of the retrieval stat
ac , where the solid and dashed curves correspond to
oscillator model and the Hopfield model, respectively. In
ther case, the critical overlap is affected little by the synap
dilution as long as 12c is smaller than 0.8. Particularly in
the oscillator neural network, the critical overlapmc remains
almost constant in the range 0 to 0.8.

As mentioned above,hc is slightly larger in the presen
model than in the Hopfield model. This implies that our sy
tem is more robust against synaptic dilution than is
Hopfield model. Let us attempt to clarify this point quantit
tively. Although ac in the oscillator network is generall
smaller than in the Hopfield model@17#, the oscillator net-
work is able to retrieve phase patterns represented by
tinuous variables, not simple binary ones. Thus, taking
count of the information content in the retrieved patterns
makes no sense to compare the storage capacitiesac of the
two models. However, it is meaningful to estimate and co
pare how the random dilution of synapses in each mo
reduces its performance from the level without diluti
(c51). For this purpose, we define the normalized ma
mum storage capacity asac*5ac /ac

0 , whereac
0 is the maxi-

mum storage capacity atc51. Thus,ac
050.038 in the oscil-

lator model, andac
050.138 in the Hopfield model. The

dependence of the normalized storage capacitiesac* on
12c is shown in Fig. 3. It is obvious from this figure that th
normalized capacityac* of the oscillator network is always
larger than that of the Hopfield network. Nevertheless,
c,0.8, the qualities of the retrieval patterns obtained in
ther model are largely independent ofc, as seen in Fig. 2

FIG. 2. Dependence of the critical overlapmc on the ratio of
disconnected synapses 12c. The solid and the dashed curves co
respond to the oscillator and the Hopfield models, respectively
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Therefore, we can conclude that the oscillator network
totally more robust against dilution than the Hopfield mod

In conclusion, using the replica symmetric solution, w
have estimated the influence of random synaptic dilution
the storage capacity and the critical overlap in oscillator n
ral networks. As a result, the difference between the per
mance of the fully connected network and that for a dilut
network is smaller in the case of the oscillator model than
the case of the Hopfield model. In this sense, we concl
that the performance of the oscillator network is superior
that of the Hopfield model. Since the oscillator network
also capable of retrieving more detailed information, this
an unexpected result. This suggests that the robust
against the damage of the synaptic connection, at least, is
deteriorated by utilizing the timing of the firings for the co
ing mechanism. This result encourages theoretical attem
to explore the potential ability of temporal coding.

Finally, we would like to make some comments. Fir
one may notice that the storage capacity found using si
lations is slightly larger than that from theoretical resul
This slight increase may be attributed to replica symme
breaking. Second, we assumed that the symmetry of the
nections is maintained in dilution process. However, t
condition is not realistic from the biological point of view.
is important to study the effect of such asymmetric diluti
@18,19#. In a preliminary study, we found that the resu
change little unless the ratio of the asymmetric connecti
is high. We will report details of this work at a later date.
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the Japanese Grant-in-Aid for Science Research Fund f
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FIG. 3. Comparison of the normalized storage capacities,ac* ,
between the oscillator model and the Hopfield model.
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